Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices.
نویسندگان
چکیده
Previous studies showed that furosemide blocks spontaneous epileptiform activity without diminishing synaptic transmission or reducing hyperexcited field responses to electrical stimuli. We now test the hypothesis that the antiepileptic effects of furosemide are mediated through its blockade of the Na+,K+,2Cl- cotransporter and thus should be mimicked by a reduction of extracellular chloride ([Cl-]o). In the first set of experiments, field recordings from the CA1 cell body layer of hippocampal slices showed that spontaneous bursting developed within 10-20 min in slices perfused with low-[Cl-]o (7 mM) medium but that this spontaneous epileptiform activity ceased after a further 10-20 min. Intracellular recordings from CA1 pyramidal cells showed that normal action potential discharge could be elicited by membrane depolarization, even after the tissue was perfused with low-[Cl-]o medium for >2 h. In a second set of experiments, spontaneous bursting activity was induced in slices by perfusion with high-[K+]o (10 mM), bicuculline (100 microM), or 4-aminopyridine (100 microM). In each case, recordings from the CA1 region showed that reduction of [Cl-]o to 21 mM reversibly blocked the bursting within 1 h. Similar to previous observations with furosemide treatment, low-[Cl-]o medium blocked spontaneous hypersynchronous discharges without reducing synaptic hyperexcitability (i.e., hyperexcitable field responses evoked by electrical stimulation). In a third set of experiments, prolonged exposure (>1 h after spontaneous bursting ceased) of slices to systematically varied [Cl-]o and [K+]o resulted in one of three types of events: 1) spontaneous, long-lasting, and repetitive negative field potential shifts (7 mM [Cl-]o; 3 mM [K+]o); 2) oscillations consisting of 5- to 10-mV negative shifts in the field potential, with a period of approximately 1 cycle/40 s (16 mM [Cl-]o; 12 mM [K+]o); and 3) shorter, infrequently occurring negative field shifts lasting 20-40 s (21 mM [Cl-]o; 3 mM [K+]o). Our observations indicate that the effects of low [Cl-]o on neuronal synchronization and spontaneous discharge are time dependent. Similar effects were seen with furosemide and low [Cl-]o, consistent with the hypothesis that the antiepileptic effect of furosemide is mediated by the drug's effect on chloride transporters. Finally, the results of altering extracellular potassium along with chloride suggest that blockade of the Na+, K+,2Cl- cotransporter, which normally transports chloride from the extracellular space into glial cells, is key to these antiepileptic effects.
منابع مشابه
Proconvulsive effect of hydrochlorothiazide in an in vitro rat seizure model
Objective(s):Protective effects of diuretics, particularly of hydrochlorothiazide (HCT), for the development of seizure attacksepilepsy have been described in vivo. However, itsthe mechanism of action of HCT is unknownneeds to be elucidated. Materials and Methods: Extracellular field potentials were recorded from the CA1- and CA3-subfields of the hippocampus of rats. Epileptiform discharges wer...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملCesium induces spontaneous epileptiform activity without changing extracellular potassium regulation in rat hippocampus.
Cesium has been widely used to study the roles of the hyperpolarization-activated (I(h)) and inwardly rectifying potassium (K(IR)) channels in many neuronal and nonneuronal cell types. Recently, extracellular application of cesium has been shown to produce epileptiform activity in brain slices, but the mechanisms for this are not known. It has been proposed that cesium blocks the K(IR) in glia,...
متن کاملMultiple actions of methohexital on hippocampal CA1 and cortical neurons of rat brain slices.
To explore the mechanism by which methohexital (MTH) activates epileptiform activity in patients with epilepsy, we examined the effects of MTH on hippocampal CA1 and neocortical neurons via extracellular and whole-cell patch-clamp recordings in rat brain slices. Perfusion of slices with 10 to 100 microM MTH caused no significant change in glutamatergic transmission in the hippocampal CA1 region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 1 شماره
صفحات -
تاریخ انتشار 1999